Explainable Artificial Intelligence

XAI Course

Detailed Program 2025–2026

Logo MVA

Professors: Gianni Franchi (ENSTA Paris), Mathieu Fontaine (Télécom Paris), Matthieu Labeau (Télécom Paris), Mehwish Alam (Télécom Paris), Matthieu Cord (Université de la Sorbonne)


Description & Objectives

This course explores Explainable Artificial Intelligence (XAI), a crucial subfield of machine learning dedicated to enhancing the transparency of complex models. While modern AI systems—particularly Deep Neural Networks (DNNs) and Foundation Models—achieve state-of-the-art performance, their black-box nature makes it challenging to understand the reasoning behind their predictions. This lack of interpretability raises concerns about trust, accountability, and the ability to extract meaningful insights from these models.

The course examines two key perspectives in XAI:

  1. The argument for using inherently interpretable models in high-stakes domains such as healthcare and finance.
  2. The development of post hoc explanation techniques that provide insight into complex models after training.

Students will engage with a variety of state-of-the-art XAI methods across multiple modalities, including computer vision, audio processing, and natural language processing (NLP). Topics covered include attribution techniques, sensitivity analysis, Concept Bottleneck Models, Concept Activation Vectors (CAVs), and Counterfactual Explanations. Through hands-on exercises, students will gain practical experience applying XAI techniques, equipping them to enhance transparency and interpretability across diverse AI applications.

Skills Targeted

Evaluation Method:

PhD students attending the course:

Course Schedule – Explainable AI

Date / Time Description Instructors Resources Room
Thursday 08/01/2026
9:00–12:15
  • Lecture (9:00–10:00): Introduction to Explainable AI
  • Practical Work (10:15–12:15): Hands-on XAI techniques
Gianni Franchi
ENSTA Paris
Lecture: Introduction to XAI Practical Work: Introduction to XAI 0C03 (Télécom Paris)
Thursday 15/01/2026
9:00–12:15
  • Lecture (9:00–10:00): Variance-based Sensitivity Analysis
  • Practical Work (10:15–12:15): Sensitivity analysis techniques
Mathieu Fontaine
Télécom Paris
0C03 (Télécom Paris)
Thursday 22/01/2026
9:00–12:15
  • Lecture (9:00–10:00): Introduction to Explainable AI (continued)
  • Practical Work (10:15–12:15): Advanced XAI applications
Gianni Franchi
ENSTA Paris
0C03 (Télécom Paris)
Thursday 29/01/2026
9:00–12:15
  • Lecture (9:00–10:00): Counterfactual Explanations
  • Practical Work (10:15–12:15): Implementing counterfactual methods
Mathieu Fontaine
Télécom Paris
0C03 (Télécom Paris)
Thursday 05/02/2026
9:00–12:15
  • Lecture (9:00–10:00): Concept Bottleneck Models
  • Practical Work (10:15–12:15): Building concept-based models
Gianni Franchi
ENSTA Paris
1A318 (Télécom Paris)
Thursday 12/02/2026
9:00–12:15
  • Lecture (9:00–10:00): Concept Activation Vectors
  • Practical Work (10:15–12:15): CAV implementation and analysis
Matthieu Cord
Université de la Sorbonne
(TP assistance: Gianni Franchi)
0C06 (Télécom Paris)
Thursday 19/02/2026
9:00–12:15
  • Lecture (9:00–10:00): Prototype Networks
  • Practical Work (10:15–12:15): Prototype-based learning
Mathieu Fontaine
Télécom Paris
0C01 Dieng (Télécom Paris)
Thursday 26/02/2026
9:00–12:15
  • Lecture (9:00–10:00): Chain of Thought Reasoning
  • Practical Work (10:15–12:15): Reasoning and interpretability
Matthieu Labeau
Télécom Paris
0C06 (Télécom Paris)
Thursday 12/03/2026
9:00–12:15
  • Lecture (9:00–10:00): Knowledge Graphs in XAI
  • Practical Work (10:15–12:15): Integrating knowledge graphs
Mehwish Alam
Télécom Paris
0C02 (Télécom Paris)
Thursday 19/03/2026
9:00–11:00
  • Written Examination (9:00–11:00)
Supervised examination 0B01 Thévenin (Télécom Paris)