
Explainable Artificial Intelligence (XAI)
XAI- INTRODUCTION

Gianni Franchi

MVA course

Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 1 / 136



Course Structure & Evaluation

� Learning Path

Diverse Modalities: We will explore XAI techniques applied across
various data types: Sound, Images, and Text (NLP).

{ Continuous Evaluation: Weekly Summaries

Each week, XXX students will be assigned to write a summary of
the course.

These summaries are graded. The best summary from each session
will be shared with the entire class.

� Final Assessment

Final Exam: An individual marked exam at the end of the term.

Group Project: Work in groups of 4 on a real-world XAI application.

Summary of the class.
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What Is Machine Learning?

Machine Learning (ML) is a collection of methods that allow computers to
make and improve predictions or decisions based on data.

Example: Predicting house prices by learning patterns from past sales.

Typical applications include:

House price estimation

Product recommendation

Traffic sign detection

Credit default prediction

Fraud detection

Although tasks differ, the underlying ML workflow is similar.
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Typical Machine Learning Pipeline

Step 1: Data Collection

Collect large amounts of data

Data includes outcomes and predictive features

Step 2: Model Training

Feed data into an ML algorithm

Learn a predictive model (e.g., classifier, regressor)

Step 3: Deployment

Apply the model to new data

Integrate into real systems (cars, finance, websites)
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Strengths and Limitations of Machine Learning

Strengths:

Faster than humans

Consistent predictions

Cheap and scalable replication

Limitations:

Insights are hidden in complex models

Understanding decisions becomes difficult
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Terminology

Algorithm: A set of rules that transforms inputs into outputs. Analogy:
cooking recipe (ingredients → food).

Machine Learning: Methods that allow computers to learn from data
rather than explicit instructions.

ML represents a shift from:

Explicit programming

to Data-driven (indirect) programming
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Illustration

Illustration of classical programming vs machine learning
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Machine Learning Models

Machine Learning Model:

Learned function mapping inputs to predictions

Examples: linear models, neural networks

Also called:

Predictor

Classifier

Regression model

Notation:
f̂ (x) is a model applied on the data x
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Black Box vs Interpretable Models

Black Box Model:

Internal mechanisms are not understandable

Example: deep neural networks

Interpretable (White Box) Model:

Internal logic can be understood by humans

Model-agnostic interpretability: Treats any model as a black box, even
if it is not.
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Definition of Interpretability

There is no formal mathematical definition of interpretability.

Miller (2017):

Interpretability is the degree to which a human can understand
the cause of a decision.

Another definition:
Interpretability is the degree to which a human can consistently
predict the model’s output.

In this course, interpretable and explainable are used interchangeably.
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Why Interpretability Matters

High performance alone is insufficient.

Doshi-Velez & Kim (2017):

A single metric such as accuracy is an incomplete description of
real-world tasks.

Interpretability is needed because:

Problems are often incompletely specified

The why matters as much as the what
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Human Curiosity and Learning

Humans build mental models of the world.

Unexpected events trigger explanations:

“Why am I sick?”

“Why did the computer shut down?”

Without explanations:

Scientific insights remain hidden

Learning and trust are limited
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Bias, Debugging, and Social Interaction

Bias Detection:

Models inherit biases from data

Interpretability helps detect discrimination

Social Interaction:

Explanations influence beliefs and actions

Machines must sometimes persuade users

Even low-risk systems benefit from interpretability during development and
deployment.
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Key Properties Enabled by Interpretability

Interpretability helps assess:

Fairness: absence of discrimination

Privacy: protection of sensitive data

Robustness: stability to small input changes

Causality: learning causal relationships

Trust: user confidence in the system
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Taxonomy of Interpretability

Intrinsic vs Post-hoc

Intrinsic: simple, interpretable models (e.g., linear models, small
trees)

Post-hoc: explanations applied after training

Global vs Local

Global: explains overall model behavior

Local: explains individual predictions
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1. Attribution Methods (Feature Importance)

Core Question: Which features or parts of the input mattered most to
the prediction?

Definition: These methods assign a numerical score (credit) to each
input feature (pixels, words, or tabular columns).

Sub-types:
Perturbation-based: LIME, SHAP (Sampling).
Gradient-based: Integrated Gradients, Saliency Maps.
CAM/Grad-CAM: Class Activation Mapping (specifically for
CNNs/Images).

Use Case: Identifying that a model looked at the ”ears” to identify a
”cat.”
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2. Concept-Based Explanations

Core Question: Which high-level human ideas/concepts are present in
the model’s logic?

Definition: Instead of raw features (pixels), these explain the model
using human-understandable concepts (e.g., ”stripes,” ”wheels,”
”beak”).

Key Techniques:
CAV (Concept Activation Vectors): Probes a pre-trained model to
see if internal layers ”understand” a concept.
CBM (Concept Bottleneck Models): An intrinsic method where the
model is forced to predict concepts before the final label.

Use Case: ”The model predicted a ’Zebra’ because it detected the
concept of ’Stripes’.”
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3. Example-Based Explanations

Core Question: Which similar or contrasting data points explain the
decision?

Definition: Using specific instances from the dataset (real or
generated) to justify a classification.

Key Techniques:
Counterfactuals: ”If Feature X had been Y, the outcome would have
flipped.” (e.g., ”If your income was $5k higher, the loan would be
approved”).
Prototypes/Criticisms: Showing the ”typical” example of a class
versus the ”outliers” that confuse the model.

Use Case: Debugging by looking at the most similar training images
the model was trained on.
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4. Rule-Based & Textual Rationalization

Core Question: Can we simplify the logic into rules or natural language?

Rule-Based Extraction:
Converting a complex model (like a Random Forest) into a small set of
”If-Then” rules.
Example: IF (Age ¿ 25) AND (Credit ¿ 700) THEN Approve.

Textual Rationalization:
Models (often LLMs) that generate a natural language paragraph
explaining their reasoning.
Example: ”I classified this as a bird because of the visible feathers and
the shape of the wing.”
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Properties of Individual Explanations

An explanation method is an algorithm that produces explanations.

Key properties include:

Accuracy

Fidelity

Consistency

Stability

Comprehensibility
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Accuracy and Fidelity

Accuracy:

How well the explanation predicts true outcomes

Fidelity:

How well the explanation matches the black-box model

High fidelity is essential

Some methods only guarantee local fidelity (e.g., Shapley values).
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Consistency and Stability

Consistency:

Similar explanations across different models

Complicated by the Rashomon Effect

Stability:

Similar explanations for similar inputs

High stability is always desirable
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Comprehensibility

Comprehensibility:

How well humans understand explanations

Depends on the audience

Possible proxies:

Explanation size

Number of features or rules

Human ability to predict model behavior

This is the most critical and difficult property to measure.
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Interpretable Models



Linear Regression



Linear Regression: Model Definition

A linear regression model predicts a continuous target variable as a
weighted sum of the input features.

For a single instance i , the model is defined as:

y (i) = β0 +

p∑
j=1

βjx
(i)
j + ε(i)

y (i): target value for instance i

x
(i)
j : value of feature j

βj : learned coefficient (weight) of feature j

β0: intercept (bias term)

ε(i): error term
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Assumptions of Linear Regression

Linear regression relies on several assumptions:

Linearity: The relationship between features and target is linear

Independence: Errors are independent across instances

Homoscedasticity: Constant variance of errors

Normality: Errors ε follow a Gaussian distribution

The Gaussian assumption implies:

Errors are symmetric

Small errors occur more frequently than large ones

Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 27 / 136



Estimating the Model Parameters (OLS)

The goal of linear regression is to estimate the coefficients

β0, β1, . . . , βp

that best explain the relationship between features and target.

Ordinary Least Squares (OLS) estimates these parameters by
minimizing the squared prediction error over the training data:

β̂ = argmin
β

n∑
i=1

y (i) − β0 −
p∑

j=1

βjx
(i)
j

2

Intuition:

Each data point produces a prediction error (residual)

OLS finds coefficients that make all residuals as small as possible

Squaring penalizes large errors more strongly
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How Are the Optimal Parameters Found?

The OLS objective is a convex quadratic function of the parameters.

Key consequences:

There is a unique global minimum

No local minima problems

In matrix form, the solution has a closed-form expression:

β̂ = (X⊤X )−1X⊤y

X : design matrix (rows = instances, columns = features)

y: vector of target values

We do not need this formula to interpret the model, but it explains why:

Feature correlations affect coefficient values

Collinearity increases parameter uncertainty

For details, see Chapter 3.2 of The Elements of Statistical Learning
(Friedman, Hastie, Tibshirani, 2009)35.
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Why Linear Regression Is Interpretable

Linear regression is inherently interpretable because:

Each prediction is a sum of feature contributions

Each coefficient βj quantifies the effect of feature j

Contributions are additive and explicit

Explanation source:

The explanation comes directly from the model equation

No post-hoc approximation is required
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R-squared: What Does It Measure?

The coefficient of determination R2 measures how well a regression model
explains the variability of the target variable.

Intuitively:

How much of the variation in y is captured by the model?

How much information do the features provide about the target?

Formally, R2 compares:

The error made by the model

To the natural variability of the data itself
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R-squared: Numerator and Denominator

The definition of R2 is:

R2 = 1− SSE

SST

Denominator: Total Variability (SST)

SST =
n∑

i=1

(
y (i) − ȳ

)2

Measures how much the target varies around its mean

Baseline model: always predict the mean ȳ ( ȳ is the mean of the
observed data: ȳ = 1

n

∑n
i=1 yi )

Numerator: Unexplained Variability (SSE)

SSE =
n∑

i=1

(
y (i) − ŷ (i)

)2

Measures the error left after fitting the model
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How to Interpret R2

R2 quantifies the fraction of variance explained by the model:

R2 =
Explained Variance

Total Variance

R2 = 0: model is no better than predicting the mean

R2 = 1: model explains all variability in the data

R2 = 0.7: 70% of the variance is explained by the features

Why R2 is useful:

Model comparison on the same dataset

Sanity check before interpreting coefficients

Important limitation:

R2 always increases when adding features

Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 33 / 136



Adjusted R-squared

R2 always increases when adding features—even useless ones.

Adjusted R2 corrects for this:

R̄2 = R2 − (1− R2)
p

n − p − 1

p: number of features

n: number of instances

Models with very low adjusted R2 should not be interpreted.
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Feature Importance via t-statistics

In linear regression, feature importance is assessed by testing whether a
coefficient is significantly different from zero.

This is done using the t-statistic:

tβ̂j
=

β̂j

SE(β̂j)

β̂j : estimated effect of feature j

SE(β̂j): uncertainty of this estimate

Interpretation:

Large |t|: strong and reliable effect

Small |t|: effect may be due to noise
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What Is SE(β̂j)?

The standard error SE(β̂j) measures how uncertain the estimated
coefficient is.

Intuitively:

It answers: How much would β̂j change if we collected a new dataset?

Formally, it comes from the variance of the estimator:

SE(β̂j) =

√
Var(β̂j)

The variance depends on:

Noise level in the data

Number of training instances

Correlation between features (multicollinearity)
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How Is Parameter Variance Computed?

The variance of the estimated coefficients is derived from:

Var(β̂) = σ2(X⊤X )−1

X : design matrix

σ2: estimated noise variance

The standard error is:

SE(β̂j) =

√
Var(β̂j)

High collinearity ⇒ large variance ⇒ unreliable explanation.
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Example: Bicycle Rental Dataset

Linear regression predicts daily bike rentals using:

Weather conditions
Calendar variables
Trend features

For each feature, we analyze:

Estimated weight
Standard error
Absolute t-statistic
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Weight Plot

The plot shows:

Estimated weights
95% confidence intervals
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Interpreting the Weight Plot

Bad weather has a strong negative effect

Working day is not statistically significant

Temperature is significant despite small weight

Limitation:

Features are on different scales

Solution: standardize features before training.
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Effect Plot: Motivation

Weights alone are scale-dependent.

The effect of feature j for instance i :

effect
(i)
j = β̂jx

(i)
j

Effects represent the actual contribution to the prediction.
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Effect Plot Visualization

Boxplots show:

Distribution of effects across instances
Median and variability
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Interpreting Effect Plots

Temperature and trend dominate predictions

Trend increases steadily over time

Negative effects correspond to high negative feature values
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Instance-Level Explanation

Question:
How much did each feature contribute to this prediction?

Compute effects for the selected instance.

Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 44 / 136



Comparing Instance Effects

Low prediction explained by:

Low temperature
Early date (small trend effect)
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Quality of Linear Explanations

Strengths:

Truthful (if model assumptions hold)

Simple and general

Transparent

Limitations:

Poor contrastive reference point

Low selectivity by default

Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 46 / 136



Improving Linear Explanations

Better explanations can be obtained by:

Mean-centering numerical features

Effect coding categorical variables

Using sparse linear models

Linear models remain popular because:

Linearity simplifies explanations

Relationships are easy to communicate
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Logistic Regression



From Linear Regression to Classification

Linear regression models a continuous outcome as a linear function of the
input features:

ŷ (i) = β0 + β1x
(i)
1 + · · ·+ βpx

(i)
p

A naive idea for binary classification is to encode the classes as:

y ∈ {0, 1}

and apply linear regression.

However, this approach is fundamentally flawed:

The model outputs values in (−∞,+∞)

Predictions cannot be interpreted as probabilities

The model treats class labels as numeric values, not categories

Conclusion: Linear regression is not suitable for probabilistic classification.
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Why Linear Regression Fails for Classification

Linear regression fits a hyperplane by minimizing squared errors:

n∑
i=1

(y (i) − ŷ (i))2

This leads to:

Predictions outside the interval [0, 1]

No probabilistic interpretation

Sensitivity to outliers in label space

Key issue:

Classification requires modeling probabilities

Linear regression models numeric targets, not uncertainty

We therefore need a model that:

Outputs values in [0, 1]

Can be interpreted probabilistically
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Logistic Regression: Core Idea

Logistic regression extends linear regression to classification by modeling
probabilities.

Instead of predicting ŷ directly, we predict:

P(y = 1 | x)

This is achieved by applying a logistic (sigmoid) function to a linear
combination of the features.

The logistic function is defined as:

σ(η) =
1

1 + exp(−η)

It maps any real number to the interval (0, 1).
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The Logistic Function

Figure: Logistic (sigmoid) function

Properties:

Smooth and monotonic

Saturates near 0 and 1

Naturally interpretable as a probability
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Logistic Regression Model Definition

We start from the linear predictor:

η(i) = β0 + β1x
(i)
1 + · · ·+ βpx

(i)
p

We then apply the logistic function:

P(y (i) = 1) =
1

1 + exp
(
−η(i)

)
Explicitly:

P(y (i) = 1) =
1

1 + exp
(
−(β0 + β1x

(i)
1 + · · ·+ βpx

(i)
p )

)
This guarantees:

0 ≤ P(y = 1) ≤ 1
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Understanding the Mathematics of Logistic Regression

Logistic regression assumes:

A linear relationship between features and log odds

Not between features and probabilities directly

The probability is a nonlinear transformation of a linear model.

Explanation comes from:

The linear structure in log-odds space

The monotonic mapping from log-odds to probabilities

This preserves interpretability while enabling classification.
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From Probabilities to Log-Odds

To interpret the coefficients, we rewrite the model.

Start from:

P(y = 1) =
1

1 + exp(−η)

Rearranging terms:
P(y = 1)

1− P(y = 1)
= exp(η)

Taking the logarithm:

log

(
P(y = 1)

1− P(y = 1)

)
= β0 + β1x1 + · · ·+ βpxp

This quantity is called the log odds.
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Odds and Log-Odds

Odds are defined as:

odds =
P(y = 1)

P(y = 0)

Log odds:

log(odds) = log

(
P(y = 1)

P(y = 0)

)
Key insight:

Logistic regression is a linear model in log-odds space

This is where interpretability comes from
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Interpreting a Feature Weight

Consider increasing feature xj by one unit.

Original odds:

odds = exp(β0 + β1x1 + · · ·+ βjxj + . . . )

New odds:
oddsxj+1 = exp(β0 + · · ·+ βj(xj + 1) + . . . )

Ratio of odds:
oddsxj+1

odds
= exp(βj)

Interpretation: A one-unit increase in xj multiplies the odds by exp(βj).
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Interpreting Logistic Regression Coefficients

Numerical feature xj :

Increasing xj by one unit multiplies the odds by exp(βj)

Intercept β0:

Represents the odds when all numerical features are zero

Usually not of practical interest

Why this matters for explanation:

Effects are multiplicative, not additive

Coefficients explain changes in odds, not probabilities directly
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Decision Trees



What Is a Decision Tree?

A decision tree is a supervised learning model for:

Classification

Regression

The model predicts the outcome by recursively splitting the feature space.

Each internal node:

Tests a feature xj against a threshold t

Each leaf node:

Outputs a prediction (class or value)

Key property:

The model is interpretable by construction
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How a Decision Tree Makes Predictions

Given an instance x(i) = (x
(i)
1 , . . . , x

(i)
p ):

Start at the root node

Evaluate the split condition:

x
(i)
j ≤ t or x

(i)
j > t

Move to the left or right child node

Repeat until reaching a leaf

Prediction:

Classification: majority class in the leaf

Regression: average target value in the leaf

Explanation comes from:

The sequence of decisions (path) taken in the tree
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Training a Decision Tree: Core Idea

Training a decision tree means learning:

Which feature xj to split on

Which threshold t to use

At each node, the algorithm searches for the split that best separates the
data.

Formally, for each candidate split (xj , t), the data is partitioned into:

Dleft = {i : x (i)j ≤ t}, Dright = {i : x (i)j > t}

The best split minimizes an impurity measure.
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Impurity Measures and Split Criterion

Common impurity measures for classification:

Gini impurity

Entropy

Example: Gini impurity at a node:

Gini = 1−
K∑

k=1

p2k

where pk is the proportion of class k in the node.

The chosen split minimizes the weighted impurity:

|Dleft|
|D|

Ileft +
|Dright|
|D|

Iright

Regression trees:

Use variance or mean squared error instead

Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 63 / 136



Why Decision Trees Are Interpretable

Decision trees are inherently explainable.

Global explanation:

The full tree structure shows how features are used

Feature importance comes from split usage and impurity reduction

Local explanation:

A single prediction is explained by its decision path

Each split corresponds to an interpretable rule

Source of explanation:

Explicit logical rules learned from data

No hidden transformations or latent representations

Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 64 / 136



Explanation with a decision tree

Figure: Decision tree and XAI.
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Decision Rules



What Is a Decision Rule?

A decision rule is a simple IF–THEN statement composed of:

A condition (also called antecedent)

A prediction (also called consequent)

Example (natural language):

IF it rains today AND it is April, THEN it will rain tomorrow.

Key idea:

If the condition is satisfied, the prediction is applied

Otherwise, the rule does not apply
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Decision Rules as Prediction Models

A predictive model can consist of:

A single decision rule

Or a set of multiple rules

General structure:

IF (conditions are met) THEN (predict a class or value)

Important:

In machine learning, rules are learned automatically

Not manually written by a human expert

This distinguishes rule-based ML from traditional rule-based systems.
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Why Are Decision Rules Interpretable?

Decision rules are among the most interpretable models in machine
learning.

Reasons:

IF–THEN structure resembles natural language

Mirrors human reasoning

Each rule can be inspected independently

Interpretability conditions:

Conditions use intelligible features

Few feature=value statements per rule

Limited number of rules

Where does the explanation come from?

Direct mapping from conditions to prediction

No hidden transformations or latent representations
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Example: House Price Prediction Rule

Consider predicting house value: {low, medium, high}.

Learned decision rule:

IF size > 100 AND garden = 1 THEN value = high

Interpretation:

Large houses with a garden tend to have high value

The model explains its decision using explicit conditions

This explanation is local and human-readable.
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General Structure of Decision Rules

A decision rule contains:

At least one condition of the form feature=value or feature>threshold

Any number of conditions combined using AND

There is no theoretical upper limit on the number of conditions.

Exception: Default Rule

Has no IF-part

Applies when no other rule applies

Ensures full coverage of the input space
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Model-Agnostic Methods



Model-Agnostic Methods

Model-agnostic explanation methods aim to explain the predictions of a
machine learning model without using any information about its internal
structure.

Key idea:

Treat the model as a black box
Only require access to:

input features x
model predictions f̂ (x)

Why is this important?
Same explanation method can be used for:

linear models
tree-based models
neural networks

Enables fair comparison of interpretability across different models

Explanation source:

Explanations come from probing model predictions, not model
parameters
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Partial Dependence Plots



Partial Dependence Plots (PDP)

Partial Dependence Plots (PDPs) visualize the average effect of one or
two features on the prediction of a machine learning model.

Introduced by Friedman (2001).

What PDPs answer:

How does the prediction change on average when a feature value
changes?

Is the relationship linear, monotonic, or non-linear?

PDPs are global explanations:

They summarize model behavior across the entire dataset
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Mathematical Definition of PDP

Let f̂ (x) be a trained machine learning model.

Split the feature vector into:

xS : features of interest

xC : all remaining features

The partial dependence function is defined as:

f̂xS (xS) = ExC

[
f̂ (xS , xC )

]
=

∫
f̂ (xS , xC ) dP(xC )

Interpretation:

Fix xS to a specific value

Average predictions over the distribution of all other features

Explanation source:

Comes from marginalizing the model prediction over unused features
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Practical Estimation of PDP

In practice, the expectation is approximated using the training data
(Monte Carlo approximation):

f̂xS (xS) =
1

n

n∑
i=1

f̂ (xS , x
(i)
C )

Procedure:

1 Select feature(s) xS
2 Define a grid of values for xS
3 For each grid value:

Replace xS in all data points
Compute predictions
Average predictions

Key assumption:

Features in xS are independent of features in xC
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PDP Example: Bicycle Rental Prediction

We fit a random forest to predict the number of rented bicycles per day
and analyze partial dependence plots.

Interpretation:

Temperature has the strongest effect
High humidity reduces bike rentals
Wind speed shows weaker and uncertain effects
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Advantages of PDPs

Intuitive interpretation:

“What happens if we force a feature to a certain value?”

Easy to explain to non-experts

Simple to implement

Provides a causal interpretation for the model:

We intervene on a feature and observe prediction changes

Important note:

Causality holds for the model, not necessarily for the real world
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Disadvantages of PDPs

Limited to one or two features

Strong independence assumption:

Violated when features are correlated

Can create unrealistic data points

Example:

Height and weight are correlated

PDP may average over impossible combinations

Consequence:

Feature effects can be biased
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Marginal Plots (M-Plots)

Marginal plots (M-plots) address correlated features by averaging
predictions conditionally.

Interpretation:

“What does the model predict for instances that actually have this
feature value?”

M-plots mix:

effect of the feature

effects of correlated features
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PDP vs M-Plot: Mathematical Difference

Partial Dependence Plot:

f̂xS ,PDP(xS) = EXC
[f̂ (xS ,XC )]

Marginal Plot:
f̂xS ,M(xS) = EXC |XS=xS [f̂ (xS ,XC )]

Key difference:

PDP averages over the marginal distribution

M-plot averages over the conditional distribution
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Step-by-Step Computation of an M-Plot

For a feature of interest xS :

1 Choose a grid of values v1, . . . , vK for xS
2 For each grid value vk :

Select a local neighborhood of instances:

N (vk) = {i : |x (i)S − vk | ≤ δ}

Compute the average prediction:

f̂xS ,M(vk) =
1

|N (vk)|
∑

i∈N (vk )

f̂ (x (i))

Here, δ controls the neighborhood width (bandwidth).

Explanation source:

Local averaging approximation of conditional expectations

Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 84 / 136



Global Surrogate Models



Global Surrogate Models

A global surrogate model is an interpretable model trained to
approximate the predictions of a black-box model.

Let:

f : black-box model

g : interpretable surrogate model

Goal:
g(x) ≈ f (x)

Explanation source:

Interpret g to understand the behavior of f
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Training a Surrogate Model

Procedure:

1 Select dataset X

2 Compute black-box predictions f̂ (X )

3 Choose an interpretable model g

4 Train g on (X , f̂ (X ))

5 Evaluate approximation quality (e.g. R2)

Important:

The surrogate never sees true labels

It learns the model behavior, not the data-generating process
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Advantages and Disadvantages of Surrogates

Advantages:

Fully model-agnostic

Flexible choice of interpretable model

Easy to communicate

Quantifiable fidelity using R2

Disadvantages:

Explains the model, not the ground truth

No clear threshold for acceptable R2
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What Problem Does LIME Solve?

Modern machine learning models are often:

Highly accurate

Highly complex (deep networks, ensembles)

Not interpretable

Goal of LIME:
Explain one single prediction of a black-box model in a way that
humans can understand.

Key idea:

Instead of explaining the model globally

Explain it locally, around one instance

Explanation source:

Local approximation theory

Interpretable surrogate modeling
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Why Do We Need a Local Model?

A complex model f may behave:

Highly non-linearly globally

Approximately linearly in a small neighborhood

Analogy:

The Earth is globally curved

Locally, the ground is flat

Consequence:

A simple model can faithfully approximate f

But only around a specific point

This is why LIME is local, not global.
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Terminology: The Black-Box Model f

f is the original trained model

We can query it with an input x

It returns a prediction f (x) (e.g., a probability)

Important constraint:

We do not access:

Model parameters
Gradients
Architecture

LIME is model-agnostic.

Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 92 / 136



Original Representation vs Interpretable Representation

Original input:
x ∈ Rd

Raw pixels, word embeddings, sensor values

High-dimensional, not human-readable

Interpretable representation:

x ′ ∈ {0, 1}d ′

Human-understandable components

Examples:

Image: super-pixels
Text: presence of words

Explanation source:

Interpretability constraints imposed by humans
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How Do We Build x ′?

Step 1: Decompose the input

Image → super-pixels

Text → words

Step 2: Binary encoding

x ′j =

{
1 component j is present

0 component j is hidden

Important:

x ′ is only used for explanation

The black box never sees x ′
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Why Do We Sample z ′ Around x ′?

We want to understand:
“Which parts of x are responsible for this prediction?”

Idea: Perturbation

Slightly modify x ′

Observe how the prediction changes

Sampling:
z ′i ∼ perturbations of x ′

Turn off random interpretable features

Create local variations
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From z ′ to z : Mapping Back to Input Space

The black box f expects inputs in original space

It cannot process z ′

Mapping function:
z = map(z ′)

If z ′j = 0, mask the corresponding component

Example:

Image: gray out a super-pixel
Text: remove a word

Now we can compute f (z).
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Local Weighting with the Similarity Kernel

Not all perturbations are equally important.

Similarity kernel:

πx(z) = exp

(
−D(x , z)2

σ2

)
High weight: z close to x

Low weight: far-away perturbations

Purpose:

Enforce local faithfulness

Explanation source:

Kernel-weighted local regression
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The Surrogate Model g

Surrogate model:
g(z ′) = w⊤z ′

Simple

Interpretable

Typically linear

Goal:

Approximate f locally

Not globally

Explanation source:

Local linear approximation
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LIME Objective Function

The surrogate model is trained by minimizing:

L(f , g , πx) =
∑

(z,z ′)∈Z

πx(z)
(
f (z)− g(z ′)

)2
Meaning of each term:

f (z): black-box prediction

g(z ′): surrogate prediction

πx(z): locality weighting

This is a weighted least-squares problem.
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Sparse Explanations via K-Lasso

Humans cannot interpret hundreds of features

LIME enforces sparsity

Constraint:
∥w∥0 ≤ K

Interpretation:

Only K interpretable features appear

These are the explanation
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SHAP Illustration (credit Osbert Bastani)
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SHAP Illustration (credit Osbert Bastani)
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SHAP Illustration (credit Osbert Bastani)
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SHAP Illustration (credit Osbert Bastani)
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SHAP Illustration (credit Osbert Bastani)
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SHAP Illustration (credit Osbert Bastani)
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Cooperative Game Notation

Set of players (features): D = {1, . . . , d}
A coalition: any subset S ⊆ D

A game is defined by a characteristic function:

v : 2D → R

v(S): value produced by coalition S

v(∅): baseline value

v(D): grand coalition value
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Key Questions in Game Theory

Which players are essential?

How much does each player contribute?

How should total value be shared fairly?

SHAP answers these questions for ML features.
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Shapley Value

A principled method to allocate credit

Based on fairness axioms

Widely used in economics and ML

Lloyd Shapley

Nobel Memorial Prize in Economics (2012)
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Shapley Value Setup

Step-by-step interpretation

Input: one game v

Output: a vector of player credits ϕ(v) =

ϕ1(v)
...

ϕd(v)

 ∈ Rd

So ϕi (v) = contribution of player i
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Shapley Value Example: Setup

Players:

One owner: o

n identical employees: e1, . . . , en

Player set:
D = {o, e1, . . . , en}

Goal:

Quantify the contribution of each player

Using the Shapley value
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Coalition Value Function

A cooperative game is defined by a value function:

v : 2D → R

Definition of the value function:

v(S) =

{
0 if o /∈ S

(|S | − 1)p if o ∈ S

Interpretation:

If the owner is absent, no production occurs

If the owner is present, each employee generates profit p

The owner alone produces no profit
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Understanding Marginal Contributions

Key idea of the Shapley value:

Players enter a coalition one by one

Contribution is measured when a player joins

For a coalition S ⊂ D \ {i}, the marginal contribution of player i is:
v(S ∪ {i})− v(S).

Important observations:

An employee contributes p only if the owner is already present

The owner enables employees but does not generate profit alone

For any player i , the Shapley value is defined as:

ϕi (v) = Eπ

[
v(Sπ

i ∪ {i})− v(Sπ
i )︸ ︷︷ ︸

marginal contribution of player i

]

Where: π is a random permutation (ordering) of all players and Sπ
i ⊆ D

is the set of players that appear before i in ordering π
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Why the Shapley Values Take These Values

Shapley value principle:

Average marginal contributions

Over all possible player orderings

Employee contribution:

With probability 1/2, the owner arrives before the employee

Then the employee adds p

Otherwise, the contribution is 0

ϕemployee =
p

2

Owner contribution:

Gains value when employees arrive after him

On average, enables half of the employees

ϕo =
np

2
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Key Takeaways

Shapley values fairly distribute total profit:

v(D) = np = ϕo +
n∑

i=1

ϕei

Contributions reflect both:

Necessity (owner)
Productivity (employees)

Credit is shared symmetrically and fairly

Explanation source:

Average marginal contribution over all coalitions

Core idea behind SHAP in machine learning
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Fairness Axioms of the Shapley Value

Setup

Let D = {1, . . . , d} be the set of players
Let v : 2D → R be a cooperative game
Let ϕ(v) =

(
ϕ1(v), . . . , ϕd(v)

)
be the allocated credits

We want the following fairness properties to hold:

(1) Efficiency ∑
i∈D

ϕi (v) = v(D)− v(∅)

The total value of the grand coalition is fully distributed
No credit is created or lost

(2) Symmetry

∀S ⊆ D \ {i , j}, v(S ∪ {i}) = v(S ∪ {j}) ⇒ ϕi (v) = ϕj(v)

Interchangeable players receive identical credit
Gianni Franchi Explainable Artificial Intelligence (XAI) MVA course 117 / 136



Fairness Axioms of the Shapley Value

(3) Null Player

∀S ⊆ D, v(S ∪ {i}) = v(S) ⇒ ϕi (v) = 0

A player who never adds value gets zero credit

(4) Linearity

ϕ(c1v1 + c2v2) = c1ϕ(v1) + c2ϕ(v2), c1, c2 ∈ R

Credits behave linearly across combined games
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Shapley Value Formula

ϕi (v) =
∑

S⊆D\{i}

|S |!(d − |S | − 1)!

d!
[v(S ∪ {i})− v(S)]

Explanation of terms:

S : coalition without player i

v(S ∪ {i})− v(S): marginal contribution

Weight: probability of i joining coalition S

Explanation source:

Average marginal contribution over all permutations
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SHAP: SHapley Additive exPlanations (credit Osbert Bastani)

SHAP = SHapley Additive exPlanations Application to Machine

Learning

Players → input features

Game value → model output

Key references: (1)Lipovetsky & Conklin (2001); (2) Strumbelj et al.
(2009); (3) Datta et al. (2016).
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SHAP as a Removal-Based Explanation

Notation Clarification

x : instance to explain

S : subset of features

xS : values of features in S

xS̄ : missing features

Game definition:

v(S) = F (xS) = ExS̄ |xS [f (xS , xS̄)] =
∑
xS̄

f (xS , xS̄)p(xS̄ |xS)

Meaning:

Keep features in S

Remove others by averaging over their possible values
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What is F (xS)?

F (xS) = ExS̄ |xS [f (xS , xS̄)]

Interpretation:

What would the model predict, if only features in S were known?

Explanation:

Expected model output for instance x

Given only features in S

It defines the game value v(S).
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Practical Approximation

ExS̄ |xS [f (xS , xS̄)] ≈ ExS̄
[f (xS , xS̄)]

ExS̄
[f (xS , xS̄)] ≈

1

m

m∑
i=1

f (xS , x
(i)

S̄
)

Monte Carlo estimation

Sample from dataset

Computational Complexity

Exact Shapley values: O(2d)

Infeasible for d > 20

Solution: Approximation
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Algorithm: Calculating Exact Shapley Values

Goal: Calculate the contribution ϕi for feature i .
1 Generate Power Set: Identify all possible subsets S of the feature

set D that do not include feature i . There are 2d−1 such subsets.
2 Compute Marginal Contributions: For each subset S :

Calculate the value with the feature: v(S ∪ {i})
Calculate the value without the feature: v(S)
Find the difference: ∆i (S) = v(S ∪ {i})− v(S)

3 Apply Combinatorial Weights: Weight each difference by the
number of ways that specific subset size can occur:

w(|S |) = |S |!(d − |S | − 1)!

d!

4 Aggregate: Sum the weighted contributions:

ϕi =
∑

S⊆D\{i}

w(|S |) ·∆i (S)

Result: A fair distribution of the prediction ”payout” to feature i .
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Permutation-Based SHAP

Randomly sample permutations of features

Add features one by one

Track marginal contribution

Approximation:

Average contributions over permutations
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Kernel SHAP

Reformulates SHAP as weighted linear regression

Uses kernel:

π(S) =
(d − 1)( d

|S |
)
|S |(d − |S |)

Properties:

Guarantees Shapley axioms

Model-agnostic
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Kernel SHAP: The Linear Shortcut

Problem: Exact calculation is too slow.

Insight: Since SHAP is an additive feature attribution method, can
we find the Shapley values using a linear regression?

Kernel SHAP treats the Shapley values as coefficients (ϕi ) of a local
linear surrogate model g(z ′):

g(z ′) = ϕ0 +
d∑

i=1

ϕiz
′
i

z ′ ∈ {0, 1}d is a binary vector representing the presence (1) or
absence (0) of a feature.
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The Weighted Least Squares Objective

To ensure the coefficients ϕi are exactly the Shapley values, Kernel SHAP
solves a weighted linear regression:

min
ϕ

∑
z ′∈Z

[v(hx(z
′))− g(z ′)]2 · πx(z ′)

Where:

v(hx(z
′)): The value function (expected model output) for subset z ′.

g(z ′): Our linear model.

πx(z
′): The SHAP Kernel (the weighting function).
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The SHAP Kernel πx(z
′)

The mathematical ”magic” that makes the linear regression yield Shapley
values is this specific weight for each subset size |z ′|:

πx(z
′) =

(d − 1)( d
|z ′|

)
|z ′|(d − |z ′|)

Why this weight?

It gives extreme weight to ”small” subsets (near 0) and ”large”
subsets (near d).

These subsets tell us the most about individual feature effects
(v({i})− v(∅) and v(D)− v(D \ {i})).
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Linking back to your slide: F (xS)

As seen in your previous slide, the target for our regression is:

v(S) = F (xS) = ExS̄ |xS [f (xS , xS̄)]

How Kernel SHAP computes this:

1 Sample a binary vector z ′ (a coalition).
2 Map z ′ to the original feature space:

If z ′i = 1, keep xi from the instance.
If z ′i = 0, replace xi with a value from a reference/background dataset
(Monte Carlo integration).

3 Pass the resulting vector to the model f to get the ”label” for our
regression.
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Kernel SHAP: Step-by-Step

1 Sample K subsets z ′k ∈ {0, 1}d .
2 For each subset, calculate the model prediction v(z ′k) by simulating

the ”absence” of features.

3 Calculate the weight πx(z
′
k) using the SHAP Kernel formula.

4 Solve the weighted linear regression to find ϕ.

5 Result: The coefficients ϕ1, . . . , ϕd are the estimated Shapley values.
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Summary: Exact vs. Kernel SHAP

Method Complexity Approach
Exact SHAP O(2d) Brute force all subsets.

Kernel SHAP O(K · d) Sample K subsets (K ≪ 2d).

K is a user-defined number of samples (typically a few thousand).

Trade-off: Lower K is faster but increases the variance (error) of the
Shapley value estimates.
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Why SHAP Satisfies Efficiency and Symmetry

1. Efficiency (The Summation Logic)

The Shapley value can be viewed as the average of marginal
contributions across all d! permutations of players.

In any single permutation, the sum of marginal contributions is a
telescoping sum:

(v({i1})− v(∅)) + (v({i1, i2})− v({i1})) + · · ·+ (v(D)− v(D \ {id}))

This always collapses to v(D)− v(∅). Since every permutation sums
to the total value, their average (SHAP) must as well.

2. Symmetry (The Procedural Fairness)

The formula is permutation-invariant.

If i and j are interchangeable, their marginal contribution to any
subset S is identical by definition.

Since the formula treats all players identical in the combinatorial
weighting, identical contributions result in identical ϕ values.
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Why SHAP Satisfies Null Player and Linearity

3. Null Player (The Zero-Contribution Guard)

Recall the formula: ϕi (v) =
∑

w(|S |)[v(S ∪ {i})− v(S)].

If player i is a ”Null Player,” the term [v(S ∪ {i})− v(S)] is zero for
every single subset S .

A sum of zeros is zero. Therefore, ϕi (v) = 0.

4. Linearity (Mathematical Distributivity)

The Shapley value is a linear operator.

The formula is essentially a weighted sum of the values v(S).

If we define a new game as u = c1v1 + c2v2, we can distribute the
summation:∑

w(S)[u(S ∪ {i})− u(S)] = c1ϕi (v1) + c2ϕi (v2)

This is crucial for ensemble models (like Random Forests), where the
SHAP value of the forest is simply the average of the SHAP values of
the individual trees.
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